NASA-CR-197027 £
//-./~5f'C£
O cr7

DEPARTMENT OF COMPUTER SCIENCE L
COLLEGE OF SCIENCES 5c/706
OLD DOMINION UNIVERSITY P 9
NORFOLK, VIRGINIA 23529 -

SOFTWARE RELIABILITY STUDIES

By
Mary Ann Hoppa, Research Associate

and

Larry W. Wilson, Principal Investigator

Final Report
For the period ended October 31, 1994

N95-14615
Unclas
0030170

Prepared for
National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23681-0001

G3/61

Under

Research Grant NAG-1-750

Kelly J. Hayhurst, Technical Monitor
ISD-System Validation Methods Branch

Report,
(01d

SOFTWARE
S Final
1994

12 p

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, VA 23508

‘ g 31 Oct.
ominion Univ.)

RELIABILITY STUDIE

period endin

(NASA-CR-197027)
D

November 1994

Software Reliability Report

NAG 1-750
Larry Wilson
Department of Computer Science

Old Dominion University
Norfolk, VA 23529-0162

There are many software reliability models which try to predict future
performance of software based on data generated by the debugging pro-
cess. Our research has shown that by improving the quality of the data
~one can greatly improve the predictions. We are working on methodolo-
gies which control some of the randomness inherent in the standard data
generation processes in order to improve the accuracy of predictions.

Mary Ann Hoppa, a PhD student at ODU, has used a LIC version with
ten known bugs to build a database consisting of empirical reliabilities for
each of the 1024 nodes of the partial debugging graph [1]. These reliabili-
ties were each found by subjecting a debugging variant of the software to
a million input cases. This data base has been used to analyze the effect
of the order in which bugs are removed on the reliability predictions of
four well known models [2]. This work found that the models were
indeed sensitive to the order in which the bugs are found. We are in the
process of preparing a second paper which will analyze the effects of us-
ing a surrogate oracle in the data collection. We are interested in the sur-
rogate since our previous data collections required a gold version and thus
were useful only as laboratory techniques. The surrogate oracle is expect-
ed to give good approximations and to be useful in a productive software
engineering environment. If the approximations prove to be highly accu-
rate we will have significantly improved the accuracy of predictions by ex-
isting software reliability models with only a minor increase in debugging
cost.

Pam Bowman, a MS student at ODU, is developing a part of a partial de-
bugging graph using a different LIC specimen. This is being done to
analyze programmer dependency relative to the work done by Hoppa and
will also investigate alternative phenomena. Also, Weimin Shi, a MS stu-
dent at ODU, is working on simulation studies for the Goel- Okomoto
model. These studies will parallel those done earlier by Wenhui Shen for

-2,

the Jelinski-Moranda and Geometric models [3]. These simulation studies
complement the empirical studies in that both are investigating the benefits
of replicated data from the debugging process as opposed to the single
sample data currently used by the models.

Future work will incorporate the information previously generated into an
integrated package with the new results. It is also our hope to further in-
vestigate some of these ideas using the GCS environment and versions,
which are part of the on going NASA-LARC experiment.

References

1. Wilson, Larry W. and Shen, Wenhui, "Software Reliability Perspectives”, Old Dominion Univer-
sity Computer Science Department # TR-87-035, 1987.

2. Hoppa, Mary Ann and Wilson, Larry W., "Some Effects of Fault Recovery Order on Software
Reliability Modelsi", To appear in the Proceedings of ISSRE 94. Also ODU CS Technical Report
#TR-94-28,

3. Shen, Wenhui and Wilson, Larry W., "Simulation Studies of Software Reliability Models
NASA Contractor Report 181889, Also released as ODU CS TR-89-10

DEPARTMENT
OF
COMPUTER SCIENCE

Technical Report # TR-94-28

Some Effects of Faulty Recovery Order
On Software Reliabiltiy Models

Larry Wilson and Mary Ann Hoppa

Old Dominion University
Computer Science Department
Norfolk, VA 23529

October 15, 1994

W

Old Dominion University
Norfolk, VA 23529-0162

Technical Report # TR-94-28

Some Effects of Faulty Recovery Order
On Software Reliabiltiy Models

Larry Wilson and Mary Ann Hoppa

Old Dominion University
Computer Science Department
Norfolk, VA 23529

October 15, 1994

Some Effects of Fault Recovery Order on Software Reliability Models
Mary Ann Hoppa
5425 Lawson Hall Key
Virginia Beach, VA 23455
804-464-4121
Larry W, Wilson*
Department of Computer Science
Old Dominion University
Norfolk, VA 23529
804-683-3084
Abstract
. Ultrareliable software is required for life critical applications and the assessment of that relia-
hility requires ever greater accuracy from reliability models. Feedback from controlled, repeatable ex-
periments is particularly needed to assess and extend the efficacy of existing software reliability models.
Also, traditional approaches allow the experimenter to formulate predictions using data from one reali-
zation of the debugging process. Thus for ultrareliable applications it is necessary to understand the
influence of the fault recovery order on the predictive performance of reliability models.

Our contribution is twofold in that we describe an experimental methodology using a data
structure called the debugging graph and apply this methodology to assess the robustness of existing
models. The debugging graph is used to analyze the effects of various fault recovery orders on the
predictive accuracy of several well-known software reliability algorithms. We found that, along a par-
ticular debugging path in the graph, the predictive performance of different models can vary greatly.
Similarly, just because a model "fits” a given path’s data well does not guarantee that the model would
perform well on a different path.

Further we observed bug interactions and noted their potential effects on the predictive process.
We saw that, not only do different faults fail at different rates, but that those rates can be affected by
the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture

that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault in-

teraction.

Keywords: Software Reliability Models, Prediction, Empirical Studies, Ultrareliable Software

*This research was partially supported by NASA grant NAG-1-750.

Introduction

Uitrareliable software is required for life critical applications such as the control of nuclear
power or flight control. Efforts to meet and certify this level of reliability will require increased testing
as well as more accurate data collections and computations. If software reliability models are to be
useful in this quest we must refine and improve these models significantly. These requirements
motivated us to investigate sources of inaccuracy in existing models with the hope of improving their
performance and/or of discovering better models.

It has been observed that predicting the reliability of a program has proved to be an unexpect-
cdly challenging task for over two decades [Bas93]. The first published descriptions of parametric
models used to describe future software performance appeared in the early 1970’s [JeM72, WiS72].
While many additional software reliability models have since been proposed, no one model has em-
erged as universally applicable; nor is it clear how to choose in advance a model for a given project.

Typically software reliability models ﬁse a sequence of interfailure times from the debugging
process to predict reliability or the related quantities of failure rate and mean time to next failure. How-
cver the sequence of interfailure times is derived from only one of many possible repair orders. If one
assumes data from n failures are being used, then there are n! possible orders in which those faults
could have been individually identified and repaired. Also uncertainty about the order of fault recovery
is compounded in that a sample of size one is used to represent the interfailure time of the software for
cach stage of the fault removal process. We investigate multiple orders for the fault removal process
and isolate the effects of varying the recovery order by using an average of multiple observations to
represent each interfailure time,

It has been conjectured in the literature that one failure may prevent access to or hide certain
others. The manifestation of this has been referred to as the fault interaction phenomenon [Dun86].
Other researchers claim that in practice, although such interactions may occasionally occur during unit
testing, they are much less common during system testing or in the operational phase [MIOQ7]. Our

data displays some manifestations of fault interactions.

-3-

We believe that fault recovery order may affect the accuracy of predictions made by software
reliability models and that the effects of bug interactions are subsumed by the recovery order problem,
since for a particular recovery order the context in which each fault contributes to the failure rate is
fixed. The remainder of this paper will focus on the use of the debugging graph to analyze the effect of
recovery order on reliability predictions and is organized as follows. Preliminary considerations are in
sections on terminology and models, on the debugging graph and on a description of the experiment.
Data are described and presented in sections on fault sizes and path anomalies, and on path selecﬁon;.
There is a section analyzing the performance of the models followed by one on conclusions and issues.
Terminology and models

Software reliability (R) is the probability of a software product operating for a given period of
time in a particular environment without exhibiting any failures. In many instances, particularly in the
highly cyclic applications with period_ic deadlines such as flight control systems, the number of input
cascs is- proportional to the execution time. We will assume this to be true for the remainder of the pa-
per. This will allow us to use the average time of computation for an input case as the given time
period, and R becomes the probability of success per input. The failure rate (F = 1 - R) expresses the
probability that a software product will exhibit a failure during a given time period in its specified en-
vironment. A third important quantity is the mean time to failure (MTTF = 1/F) which indicates the
number of expected input cases prior to the next failure. We use the term fault recovery to mean the
identification of faults and the implementation of suitable code repairs to remove them from the pro-
gram.

The models examined in this experiment are Jelinski-Moranda [JeM72]; Geometric De-
Eutrophication [Mor75]; Basic Musa [MIO87]; and Logarithmic Poisson [MuOB84]. The Jelinski-
Moranda model assumes that all faults contribute equally to the unreliability of the program, so that the
plot of failure rate versus time is a step function in which each step essentially represents one "error’s
worth” of hazard. In an attempt to describe testing in which an accumulated group of faults is correct-
ed simultaneously or the hazard contributions of faults are not equal, the Geometric De-Eutrophication

model assumes a plot of failure rate versus time in which the step size decreases in a geometric se-

-4 .-

quence with each subsequent fault removal. The Basic Musa and Logarithmic Poisson models are con-
tinuous analogues to the Jelinski-Moranda and Geometric De-Eutrophication, respectively.
The Debugging Graph

Suppose a program contains n known faults labeled 1..n respectively. There are n! possible
orders in which the n faults could have been individually located and repaired. The debugging graph is
useful for representing and studying these n! orders. [WiS87). The rows, or levels, of the debugging
graph are labeled from 0 to n, with row i representing stage i of the debugging process where i of the n
bugs have been repaired. The term variant references any version of the original program with some
subset of the known repairs installed. Each graph node represents a variant and is labeled with P sub-
scripted by the subset of {1,2,...,n} corresponding to the faults repaired in that variant.

There is a single node, labeled P, at level 0; it represents the variant with no repairs installed.
Likewise, there is a single node at level n, labeled $P sub {1,....n}$: it represents the software with all n
known repairs installed. At level 1, there are n nodes, labeled $P sub 1$ through $P sub n$, each
representing a variant of the original program P with only one of the n known faults removed. In gen-
eral, at level m, $0 <= m <= n$, there are n! / (m! (n-m)!) nodes and a total of $2 sup n$ nodes in
the debugging graph.

An edge in the graph represents a repair for one fault and connects one node to another at the
next level, where the subscripts of the adjacent nodes differ in exactly one element. In general, at level
m, S0 <= m <= n$, each node has (n-m) edges joining it to nodes at level (m+1). This results in a to-
tal of 52 sup {n+1}$ edges in the debugging graph. A debugging session removes all known bugs and
is represented by a path in the debugging graph from P to $P sub {1...n}$ that follows edges through
exactly one node at each of the levels 0 through n.

In order to obtain empirical reliability estimates each variant is subjected to a large set of in-
puts, generated randomly according to the prescribed usage distribution, and the number of inputs pro-
ducing expected outputs is determined by using an oracle (error detector). This enables each variant’s
reliability to be estimated using the calculation: R = (number of “expected” outputs) / (total number of

inputs). Thus each node in the debugging graph subsequently can be labeled with the empirically deter-

mined reliability of its correspénding variant.
Experiment Description

For this preliminary experiment we required non-trivial code developed under controlled
scientific conditions for which a documented debugging history existed. To this end we chose a version
of the Launch Interceptor Code (LIC) which was prepared by RTI [Dun86) as part of a previous NASA
experiment. This code consisted of about 500 lines of FORTRAN written by a professional program-
mer to specifications which iﬁcluded the input distribution; it came with the required debugging history
as well as a gold version (presumably correct) which could be used to develop an oracle. This version
had twelve known bugs; however, we found that two of them were artifacts of the previous test en-
vironment and did not violate the specifications. The repairs for those two bugs were installed prior to
collecting data. We then constructed a debugging graph for the remaining bugs (n = 10) by using 1
million input cases to estimate R for each of the 1024 nodes as described below.

The software was ported from the NASA Langley Research Center’s AIRLAB facility in
Hampton, Virginia to the CS Department Sun network at ODU. A testing environment, LICCtrl (see
Figure 1), was tailored for our experiment to generale a large, random (but repeatable) input stream,
and to run two separate subroutines: the gold version; and a selected LIC test variant containing some
combination of known bugs and repairs. On each iteration, both subroutines were exercised using the
same input values and the outputs were compared for equality. Output agreement corresponds to a
successful or "expected” outcome; while output disagreement and/or abnormal termination of the test

variant denotes a failure. Successful runs were tallied and R was calculated for the variant.

read runtime parameters;
for(desired number of runs) {
generate next set of input values;
load common block;
call gold subroutine;
load common block;
call test subroutine;
compare gold and test results;
tally & record;
}
output summary statistics;
exit(0);

-6 -

Figure 1. Overall LICCtrl Program Logic

Fault Sizes and Path Anomalies

Since intuitively the debugging process is most likely to recover bugs in a "largest-to- smal-
lest” order, we conjectured that recovering the faults in various "size" orders is appropriate. We applied
a criterion used in earlier experiments which associates bug sizes with their observed failure rates
{Cow91]. Table 1 illustrates the reliability changes realized by installing each of the ten known repairs
in the initial program P (level 1) versus those changes created by removing only one of the known
repairs from PI,....10 (level 9). At level 1, observed failure behavior for a given fault-inferred by
observing the effects of installing its repair-is subject to the influence of all other faults, both known
and unknown, in the program. At level 9, observed failure behavior for a given fault-inferred by observ-
ing the effects of removing its repair-is not subject to the influence of other known faults, but is
influenced by as yet undiscovered faults in the program.

According to Table 1, the only faults which appear to behave identically at both levels are-7
and 10, with 8 and 9 exhibiting not much difference. In fact we noted that half of the ten bugs con-
sidered could potentially change ranking depending on whether the size comparison were performed at
level 1 or at level 9. So we used both as possible size rankings when constructing comparison paths.
{Note: We defer for now special handling of cases in which the R values are equal, such as bugs 9 and

10 at level 9, and simply use the ordinal ranking to break ties). Table 1 illustrates, as did earlier

Table 1. Some Bug Sizes

Level 1 Repair Level 9
Reliability Change Reliability Change
51.3188 1 54.6220
1.4534 2 2.7724
0.1368 3 0.1472
0.4365 4 1.1626
0.6057 5 1.0076
0.0051 6 0.0286
0.0000 7 0.0000
0.0003 8 0.0004
0.0000 9 0.0001
0.0001 10 0.0001

-7-

experiments, that by looking at multiple debugging graph levels the observed change in reliability asso-
ciated with installing a particular repair can vary with the presence or absence of the other faults in the
program [WhH90].

The previous paragraph revealed that even when considering a repair which is known to be
“correct,” one cannot always expect it to have the same reliability growth effect, since that effect
depends on when the repair is installed during the debugging process. Examination of various levels of
the debugging graph and the attempts to "size" the software’s known faults revealed that not only do
individual faults fail with different rates [NaS82], but that the rate experimentally associated with a
given fault is a function of the program’s debugging state at the time assessment is made. We attribute
this effect to interactions among faults and note that these interactions may result in unexpected
changes in the failure behavior of the variants.

Similarly, one might expect that the proportion of inputs producing expected outputs would
always increase during a debugging session as each subsequent fault is repaired by a known "correct”
fix. By inspecting sample debugging paths, however, we realized that installing a given repair can
result in positive reliability growth, "low-to-no" change or even negative growth depending on the stage
at which the repair is done. There may even be a subset of the known repairs which, when installed,
results in a higher reliability figure than installing all known repairs. In the past, such behavior has been
attributed to partial or incorrectly done repairs. The anomalies in reliability growth on certain paths
Icad us to alternative conclusions. Not only is the rate experimentally associated with a given fault sub-
ject to the program’s debugging state, but the installation of a correct repair may result in a negative
reliability growth. We believe these phenomena are physical manifestations of interaction effects that

need 10 be taken into account during software reliability modeling.

Path Selections

For model comparison purposes, we wanted to choose a variety of debugging paths based on the
graph construction effort described above. Debugging paths were constructed according to the fault
recovery criteria enumerated in Table 2. The path pairs 1 & 3 and 2 & 4 were intentionally chosen to

be intuitive (largest-to-smallest) and counter-intuitive (smallest-to- largest) recovery orders, respectively.

-8-

Paths 5 & 6 are the intuitive and counter-intuitive examples of hybrid paths. The intent of a hybrid is
to size-rank the first half of the known faults with respect to their behavior in the otherwise unrepaired
program (at level 1), and the remaining faults with respect to their behavior in the otherwise maximally
repaired program (at level (n-1)). Such paths may more accurately reflect reality in the sense that early
in the debugging process, bugs exist in the presence of many others; while later bugs are ranked in an
isolated fashion to reflect the more purified nature of the software that exists at that time. Paths 7
through 10 were included to stress the predictive models by making the reliability improvements oscil-
late between relatively large and small steps. Paths 11 & 12 recover faults in mixed size orders, while
Path 13 represents fault repair in the original recovery order.

Inspection of the empirically calculated R value sequences associated with each of these paths
reveals that they collectively illustrate a variety of anomalies (e.g., flat or negative reliability growth
scquences), intentionally "expected” and "unexpected” repair orders (e.g., largest-to- smallest versus

smallest-to-largest), and predominately high as well as predominately low R values.

Table 2. Description of Debugging Paths

Path Construction Method

1 largest-to-smallest order w.r.t. level 1 size rankings

2 smallest-to-largest order w.r.t. level 1 size rankings

3 largest-to-smallest order w.r.t. level 9 size rankings

4 smallest-to-largest order w.r.t. level 9 size rankings

S five largest repairs in non-increasing size order w.r.t. level 1 size rankings, followed by
the remaining five repairs in non-increasing size order w.r.t. level 9 size rankings

6 five smallest repairs in non-decreasing size order w.r.t. level 1 size rankings, followed by
the remaining five repairs in non-decreasing size order w.r.t. level 9 size rankings

7 altemate the largest remaining repair followed by the smallest remaining repair w.r.t.
level 1 size rankings

8 altemate the smallest remaining repair followed by the largest remaining repair w.r.i.
level 1 size rankings

9 altemate the largest remaining repair followed by the smallest remaining Tepair w.r.t.
level 9 size rankings

10 alternate the smallest remaining repair followed by the largest remaining repair w.r.t
level 9 size rankings

11 medium, small and large repairs in mixed order w.r.t. Ievel | size rankings

12 medium, small and large repairs in mixed order w.r.t. level 9 size rankings

13 original order (1,2,3 etc.)

-9.

The Jeliﬁski-Moranda [JeM721, Geometric De-Eutrophication [Mor75], Basic Musa [MIO87], and
Logarithmic Poisson [MuO84] models were implemented in the C programming language and executed
on Sun SparcStations. We used the relationship MTTF = 1 / (1 - R) to generate input sequences for
each chosen path. These sequences were used as inputs for each model, and the failure time s predicted
by the models were compared against the known, empirically observed failure data. Along each chosen
debugging path, (i+1) experimentally generated consecutive MTTFs were used as inputs to a model to
predict the (i+1)st failure time for each i from 1 to 10. (Note: The Oth input value used was derived
from the R value associated with the variant P.)

As a measure of a model’s predictive accuracy, the predicted failure time was in each case

- compared with the corresponding empirically determined MTTF calculated from the R value determined
from the data for the appropriate variant. The comparison was normalized by taking the ratio of

estimated MTTF as predicted by a model to the empirical MTTF. Ratios close in value to 1 are inter-

preted as indicating accurate predictions,- while values greater than 1 indicate optimistic predictions and

those between 0 and 1 indicate pessimistic predictions. For example, a predicted MTTF that is an order

of magnitude greater than the actual MTTF produces a ratio value near 10. This implies that the

software would probably fail ten times sooner than one would have expected based on the estimated

MTTF value; hence the model’s prediction is optimistic.

Performance Analysis

The prediction ratios for the four models are shown in Tables 3 through 6. The tables should
be read in a row-wise fashion, where each row represents predictions albng the debugging path cited in
its lefi-most column. Six decimal places are carried to reflect the precision of the MTTF values input
to the models. Nine predictions are presented for each path, they are labeled in the tables as "MTTF
Prediction Stages.” These range from the prediction of mean time to second failure to the prediction of
the mean time to tenth failure. Although we can make a prediction of mean time to eleventh failure,
without additional debugging data we lack the empirical R value needed to calculate a comparison ratio
in this case. We marked exceptional cases with asterisks; appropriate interpretations are indicated with

each table.

-10 -

The underlying assumption of the Jelinski-Moranda algorithm-that "all bugs are created
equal”-probably makes it inappropriate for realistic applications. It is interesting that the model’s pred-
ictions were initially quite good for the "mixed" recovery order paths (11 and 12). Although it other-
wise generally failed at prediction, the algorithm performed consistently over the "intuitive” paths,
assessing a finite number of bugs after the first few iterations; whereas "counter-intuitive” paths proved
to be more challenging, probably due to "low-to-no" growth characteristics.

For several "counter-intuitive” paths (paths 2, 4 and 6), the Geometric Dg— Eutrophication algo-
rithm provided the most accurate overall predictions possibly since the effect of the largest fault was
postponed in those particular cases. It also gave good predictions for "mixed” recovery order paths (11
and 12) until the last two predictive stages where the performance again degenerated after the data
representing the largest fault was introduced. Along the remaining paths, the model appeared to try and
correct its predictions at some point; but the predictions tended to grow either increasingly optimistic
or pessimistic thereafter.

The behavior of the Basic Musa model, as compared to that of its discrete counterpart Jelinski-
Moranda, can be viewed as highly inconsistent from path to path as well as along any given path.
Although it made predictions, all were either very optimistic or pessimistic, and it often incorrectly
predicted perfect software after a large relative reliability improvement step. Interestingly, however, the
influence of the very large repair (i.e., the fix for bug 1) appeared to be mitigated if it were inserted
early.

The primary challenge in using the Logarithmic Poisson model was determining parametric values
which "fit” the functions, given the input data precision and host computer accuracy; this problem was
particularly evident when "small-to-large” or "mixed” repair orders were p resented as inputs. However
this model performed extremely well on the "intuitive" paths (1,3 and

5) and the original order path (13), with possibly a very slight preference for the intuitive paths. It
was the only model to perform well on the intuitive path. We note also the closeness of the predictions

of this model and the Basic Musa model on portions of some paths (e.g., paths 11 and 12).

- 11 -

Table 3. Jelinski-Moranda Prediction Ratios
* no solution; N is infinite or no R growth present

** no solution; N is finite

Path = MTTF Prediction Stage o =
2 3 4 5 6 7 8 9 10
] * *% * Kk L 2] £l *k %ok ok *k
2 * * * * o * 984969 966156 1.61788e-5
3 * % *k e ok sk &k %% %%
4 * * * * * * 986483 967225 1.61919¢-5
5 * * ok *k * % ok *% ek * % ek
6 * * * * * * 986483 967225 1.61919¢-5
7 * * K% *% ok 430056 ek *% Xk
8 * ok *k ek *ok *h %%k * % %%k
9 * * ok ek ok L2 ok ¥ *k
lo * *k ok ok %% ¥k % *y *%k
11 1.00231 | .993849 | 1.00127 | 992366 | 1.00038 | .977324 | 992851 | 1.83469¢-5 **
12 1.00231 1.00162 .990453 990931 .999741 977105 992865 1.65146¢-5 **
1’3 * ok %%k *k %k * Kk ik *%
Table 4. Geometric De-Eutrophication Prediction Ratios
Path MTTF Prediction Stage
2 3 4 5 6 7 8 9 10
1 5.254125 4.094815 0.653375 0.525571 0.131187 1.722893 6.503249 26.333447 64.380750
2 1.000000 0.999998 0.999995 0.999912 0.997586 0.991224 0.984954 0.966084 0.000016
3 5.254125 3.636669 | 0.728972 | 0.544683 | 0.133134 | 1.731698 | 6.522468 | 23.720902 | 64.505362
4 1.000000 0.999998 0.999995 0.999912 | 0.997586 0.988216 0.986459 0.967144 0.000016
5 5.254125 4.094815 0.653375 0.525571 0.131187 1.722893 6.503249 23.700102 64.607380
6 1.000000 | 0.999998 | 0.999995 | 0.999912 | 0.997586 | 0.988216 | 0.986459 | 0.967144 0.000016
7 11.434335 2.787241 2.999700 1.656010 2.123555 0.315943 1.102452 0.316568 0.031772
8 0.087456 2.587646 1.845143 3.083805 2.130480 2782936 0.423873 1.044780 0.011590
9 11.434335 | 2787241 | 2.999700 | 1.470728 | 2.045788 | 0.357346 | 1.151743 | 0.326621 0.032295
10 0.087456 2.587646 1.845143 3.083805 1.892095 2.628615 0.469600 0.217302 0.030771
1 1.002302 | 0.993848 | 1.001238 | 0.992335 | 1.000283 | 0.977219 | 0.992475 | 0.000018 0.622673
12 1.002302 1.001619 | 0.990452 | 0.990893 | 0.999628 | 0.976982 | 0.992461 0.000017 0.699562
13 5.254125 6.713279 2.491269 0.087452 0.087452 2.245986 6.142692 22.041007 53.985926

-1

7.

r'4

Table 5. Basic Musa Prediction Ratios
* indicates software predicted to be perfect

Path MTTF Prediction Stage

2 3 4 5 6 7 8 9 10

i 0.229752 | 0.191542 | 0.627602 | 5.12068e+10 * 204.19 3.42157 0.480884 0.174262
2 0.5 0.333333 0.249999 0.199983 0.166269 0.141748 0.123628 0.108139 1.64873e-6
3 0229752 | 0.170157 | 3.04723 | 3.46102e+10 * 203.974 3.42072 0.564199 0.221082
4 0.5 0.333333 | 0.249999 0.199983 0.166269 0.141318 | 0.124005 0.108139 1.64873¢-6
s 0.229752 | 0.191542 | 0.627602 | 1.5362¢+07 * 204.19 3.42157 0.56425 0.221097
6 0.5 0.333333 | 0.249999 0.199983 0.166269 0.141318 | 0.124005 0.108139 1.64873e-6
7 0.5 0.153168 | 0.26595 0.114748 0.229378 | 0.0191406 | 4.35596 567340 *

8 0.0437279 | 0.700702 | 0.114876 0.394062 0.0957884 | 0.307529 0.31857 18.2149 *

9 0.5 0.153168 | 0.26595 0.10191 0286481 | 0.0215521 | 3.91331 385886 *

10§ 0.0437279 | 0.700702 | 0.114876 0.394062 0.0850967 | 0.387969 1.54892 | 3.31808e+12 *

11 0.499955 | 0.330746 | 0.249999 0.197805 0.166666 0.139036 0.125 2.03437e-06 598.426
12 0.499955 | 0.333332 | 0.247306 0.198407 0.166666 0.139036 0.125 1.83192¢-06 219.068
13 0.229752 031376 | 0.119647 | 1.67047e+10 * 16.3482 3.65748 0.671158 0.275259

Table 6. Logarithmic Poisson Prediction Ratios
* [ndicates no solution for desired precision

Path MTTF Prediction Stage

2 3 4 5 6 7 8 9 10

1 0.836174 0.19322 | 0.253012 | 0.994774 1.17794 1.52371 135359 1.1899 1.01764

2 0.500002 | 0.333334 0.25 * 0.16627 * 0.123629 0.10814 *

3 0.836174 | 0.171919 | 0384522 | 0.991078 1.1759 1.5226 1.35247 1.1887 1.02948

4 0.500002 | 0.333334 0.25 * 0.16627 * 0.124005 0.10814 *

5 0.836174 | 0.193228 | 0.253012 | 0.994774 1.17794 1.52371 1.35359 1.1899 1.03081

6 0.500002 | 0.333334 0.25 * 0.16627 * 0.124005 0.10814 *

7 0.954732 * 0.275298 * e * 0.553978 * 0.645629

8 0.0437315 | 0.899645 | 0.418087 | 0.514248 | 0.0967482 * 0.126748 0.591096 0.52569

9 0.954732 * 0.275298 * 0.276793 * 0.550244 * 0.643364

10 [| 00437315 | 0.899645 | 0.418087 | 0514248 | 0.0860996 | 0.385635 | 0.192425 0.587578 0.750928

11 * 0.330746 | 0.249999 | 0.197806 | 0.166667 | 0.139037 0.125 2.48459¢-06 *

12 * 0.333332 * 0.198408 | 0.166667 | 0.139037 0.125 . *

13 0.836174 | 0.315014 * 0.231535 1.19901 1.53566 1.3109 1.18671 1.03164

-13-

The data derived from comparing the- four reliability models clearly show that along a given
debugging path, the predictive performance of these models can vary greatly (e.g., Path 1 in Tables 3
through 6). Additionally, just because a model appears to "fit" a given path’s data well in terms of its
predictive performance, there is no guarantee that the model would still appear as appropriate had those
faults been recovered in a different order (e.g., contrast paths 4 & 7 in Table 4). In other words, if the
experimenter evaluates models based on a single realization of the debugging process, with the faults
recovered and corrected in a single order, he or she might reject a model that could perform quite well

using data from an alternative recovery order.

Conclusions and Issues

We have presented a methodology involving the debugging graph whereby the performance of
software reliability models can be analyzed under laboratory conditions. This procedure allows one to
use the average of large sample sets to replace the single point samples normally used as input for these
models and thus to scrutinize their performances with some of the randomness removed from the input
data.

In this preliminary experiment we observed that recovery order is an important factor in the
potential performance of these models. Further, based on this work it appears that if one could pick the
model, control the recovery order and use the average of large samples for the interfailure times, then
onc could expect more accurate predictions. Further experiments are needed involving new specimens
and problems to support this conjecture. Also it is a challenge to implement improvements in the
software prediction process based on these ideas.

We observed multiple manifestations of bug interactions in this data. Further exploration of
the debugging graph database should be conducted to study side-effects of bug interactions; for exam-
ple, a debugging path along which the outputs from selected inputs oscillate between agreeing and

disagreeing with the oracle may provide new clues as to the nature of bug interaction.

- 14 -

References

[ACLS6] Abdalla A. Abdel-Ghaly, P. Y. Chan and Bev Littlewood, "Evaluation of Competing Software
Reliability Predictions,” IEEE Transactions on Software Engineering, vol. SE-12, no. 9, September
1986, pp. 950-967.

[Bas93] Farokh Bastani, "Forward: Software Reliability," IEEE Transactions on Software Engineering,
vol, 19, no. 11, November 1993, pp. 1013-1014.

[Cow91] Christopher Cowles, "Measuring Software Reliability Models,” Master’s Degree Project Report
(unpublished), Department of Computer Science, Old Dominion University, Norfolk, Virginia, 1991.

[Dun86] Janet R. Dunham, "Experiments in Software Reliability: Life-Critical Applications," TEEE
Transactions on Software Engineering, vol. 12, no. 1, January 1986, pp. 110-123.

[JeM72] Z. Jelinski and P. Moranda, "Software Reliability Research,” Statistical Computer Performance
Evaluation, Walter Freiberger, (ed.). New York: Academic Press, 1972, pp. 465-483.

[Mor75] P. B. Moranda, "Prediction of Software Reliability During Debugging,” Proceedings of the
Annual Reliability and Maintainability Symposium, 1975, pp. 327-332.

{MIOS87} John D. Musa, Anthony Iannino and Kazuhira Okumoto, Software Reliability: Measurement,
Prediction, Application. New York: McGraw-Hill Book Company, 1987.

[MuO84] J. D. Musa and K. Okumoto, "A Logarithmic Poisson Execution Time Model for Software
Reliability Measurement,” 7th IEEE International Conference on Software Engineering, 1984, pp. 230-
238.

[NaS82] Phyllis M. Nagel and James A. Skrivan, "Software Reliability: Repetitive Run Experimenta-
tion and Modeling,” CR-165836, NASA Langley Research Center, Hampton, Virginia, February 1982.

[WhH90] Richard L. White and Christine F. Harbison, "The Error Graph: Research in Software Relia-
hility,” Master’s Degree Project Report (unpublished), Department of Computer Science, Old Dominion
University, Norfolk, Virginia, 1990.

[WiS72] K. G. Wilkinson and M. L. Shooman, "Probalistic Models for Software Reliability Prediction,”
Statistical Computer Performance Evaluation, Walter Freiberger, (ed.). New York: Academic Press,
1972, pp. 485-502.

[WiS87] Larry Wilson and Wenhui Shen, "Software Reliability Perspectives,” TR-87-035, Old Domin-
ion University, Norfolk, Virginia, 1987.

